DEPARTMENT OF MATHEMATICS

Programme Specific Outcomes (PSOs) – M. Sc Mathematics Programme

PSO1:	Understand the nature of abstract mathematics and explore the concepts in further
	details.
PSO2:	To assimilate complex mathematical ideas and arguments.
PSO3:	Provide advanced knowledge on topics in pure mathematics, empowering the students to pursue higher degrees at reputed academic institutions.
PSO4:	Good understanding of number theory which can be used in modern online cryptographic technologies
PSO5:	Comprehend and write effective reports and design documentation related to mathematical research and literature, make effective presentations
PSO6:	Assist students in preparing (personal guidance, books) for competitive exams e.g. NET, GATE, etc.

Course outcomes

SEMESTER	COURSE CODE	COURSE NAME		COURSE OUTCOMES
1	MTH1CO1	ALGEBRA -I	CO1:	Concept of group action and theorems about group actions.
			CO2:	Ability to understand a large class of commutative rings by regarding them as quotients of polynomial rings by suitable ideals.
			C03:	Provide information on ideals and Quotient rings, Field of Quotient of an integral domain.
			C04:	To introduce field extensions and Construction of finite fields

	MTH1CO2	LINEAR ALGEBRA	CO1:	Vector theory: subspace, basis, linear independence, inner product spaces etc Discuss Algebra of Linear
1			CO2:	
			C03:	Finding the eigenvalues and eigenvectors of linear transformations
			C04:	Explains canonical forms and inner product space
	MTH1CO3	REAL ANALYSIS 1	CO1:	Basic idea of metric spaces, examples and the connected set
			CO2:	Students should be able to illustrate the effect of uniform convergence on the limit function with respect to boundedness, continuity, differentiability and integrability
1			C03:	Learn the theory of Riemann-Stieltjes integrals, to be acquainted with the ideas of the total variation and to be able to deal with functions of bounded variation.
			C04:	After completing the course, the student should be able to recognize, understand and apply concepts and methods in advanced real analysis.
1	MTH1C04	NUMBER THEORY	CO1:	Understand the concepts of divisibility and Primes and Solve congruences.
			CO2:	Solve the average arithmetic functions and some elementary theorems

			C03:	Describe briefly the cryptography
			C03.	and some keys
				Understand the definitions namely,
			CO1:	cut vertex, bridge, blocks and
				Automorphism group of a graph.
		DISCRETE		Study the properties of trees and
1	MTH1C05	MATHEMATICS	CO2:	connectivity and Identify Eulerian
		Williamittes	CO2.	graphs and apply results to identify
				Hamiltonian graphs.
			C03:	Study the basic concepts of automata
			003.	theory
	MTH2C06	ALGEBRA -II	CO1:	Explain Sylow theorem and its
			CO1.	applications.
2			CO2:	Explains the Automorphism of fields
				and the splitting fields
			C03:	To introduce field extensions CO8
				Discussion of Galois theory
	MTH2C07	REAL ANALYSIS II	CO1:	Measurable sets and Lebesgue
				measure, construction of non-
				measurable sets.
			CO2:	Lebesgue integration, convergence
				theorems for Lebesgue integrals and
2				Fubini's theorem.
_			C03:	To introduce measure theoretic
				integration
			C04:	Deciding under which conditions the
				fundamental theorem of calculus is
				applicable in the context of Lebesgue
				integration.
2	MTHC08	TOPOLOGY	CO1:	Introducing topology as a
<u>~</u>	MITTICOO			generalization of metric spaces

			1	Know the definition and basic
			CO2:	properties of connected spaces, path
				connected spaces, compact spaces,
				and locally compact spaces;
				To introduce the peculiarities of
			C03:	compactness and connectedness in
				different spaces
			C04:	Explains the separation axioms and
			C04.	the product topology
				Obtain solutions of the
			CO1:	Homogeneous equation with constant
		ODE AND	COL	co-efficient and Homogeneous
	NATIO COO	ODE AND		equation with analytic co-efficient.
2	MTH2C09	CALCULUS OF VARIATION		Introduction to calculus of variation
			CO2:	and the existence of solution
			G02	Solution of first order differential
			C03:	equations
				Analyze Graphical Method, Use of
	MTH2C10		CO1:	Artificial variables and Inverting a
				Matrix using Simplex method.
2		OPERATIONS		Understand Test the optimality for
2		RESEARCH	CO2:	Degeneracy by using Transportation
				Algorithms (MODI method).
			C03:	Study Assignment Problem and its
				applications.
				Impart basic knowledge of
3	MTH2C11		CO1:	differentiation and integration in n-
		MUTIVARIABLE CALCULUS AND		dimensional Euclidean space.
			G 2 -	To get an idea of application of real
			CO2:	analysis in geometry
		GEOMETRY		Understand Gauss Map-Geodesics
			C03:	and Apply Parallel Transport and
				Weingarten map
				· · · · · · · · · · · · · · · · · · ·

			C04:	Study the concept of Curvature of
			201.	plane curves and surface
	MTH3C12	COMPLEX ANALYSIS	CO1:	Introduce complex integration to understand analytic functions in a better way.
			CO2:	Solve the problems using complex analysis techniques applied to different situations in engineering and other mathematical contexts.
3			C03:	Establish the capacity for mathematical reasoning through analysing, proving and explaining concepts from complex analysis
			C04:	Understanding of topological and geometric properties of the complex plane.
	MTH3C13 FUNCTIONA ANALYSIS	FUNCTIONAL	CO1:	Concept of normed linear spaces and inner product spaces and the bounded linear operators between these spaces.
			CO2:	Study Continuous linear transformations and the Hahn-Banach theorem.
3			C03:	Understand the relevance of Operator Theory.
		AIVAL I SIS	C04:	The learner will be able to understand and apply fundamental theorems from the theory of linear operator

			CO1:	To introduce Partial differential equations for solving real life
				situations.
				Analyze the origin of first order
		PDE AND	CO2:	partial differential equations and
3	MTH3C14	INTEGRAL		solving them using Charpit's method.
	1/11110 01 1	EQUATIONS		Understand the formation and
			C03:	solution of some significant PDEs
				like wave equation, heat equation and
				diffusion equation.
			C04:	Introduction to integral equations and
				Newman series
	MTH3E01	CODING THEORY	CO1:	Understand the concept of Maximum-Likelihood Decoding and
			COI:	Syndrome Decoding.
				Analyze Double Error-Correcting
3			CO2:	
				Polynomials
			C03:	Study the concept of Bose-
				Chaudhuri-Hocquenghem (B.C.H.)
				Codes and Weight distributions
				Understand and apply fundamental
	MTH4C15		CO1:	theorems from the theory of normed
				spaces, including the Uniform
				Boundedness theorem, the open
		ADVANCED		mapping theorem, the closed graph
4		FUNCTIONAL		theorem, and the Banach Fixed Point
		ANALYSIS		theorem.
				Have a good grasp of the spectral
				properties of various operators such
			CO2:	as Compact Linear Operators, Self-
				adjoint linear operators, Positive
				Operators and Projection Operators.

			C03:	Understand and apply ideas from spectral theory to other mathematical contexts and related areas
		ALGEBRAIC NUMBER THEORY	CO1:	Deals with the basic concepts of modules and quadratic fields
4	MTH4E06		CO2:	Explains the factorization of polynomials
			C03:	Understand lattices, factorization of a rational primes, Fermat's last theorem
	MTH4E09	DIFFERENTIAL GEOMETRY	CO1:	Understand the concept of Graphs and Level Sets-Vector fields.
4			CO2:	Analyze Surfaces and Vector field on surfaces And Understand Gauss Map-Geodesics.
			C03:	Apply Parallel Transport and Weingarten map and Study the concept of Curvature of plane curves and surface
4	MTH4C11	GRAPH THEORY	CO1:	Write precise and accurate mathematical definitions of objects in Graph theory
			CO2:	To introduce connectivity, colouring and the concept of planarity
			C03:	Discuss and understand the importantance of the concepts Matchings and Colourings.